
Understanding the Architecture of
the New Grids

John Tuohy

The New Grids

• The new grids classes were created to replace the
functionality of the existing grid classes
– We needed to provide replacement functionality for:

• Regular grids (the old Grid class)
• Data Aware Entry grids (the old dbGrid class)
• Prompt lists (the old dbList and List class)

• A new grid is implemented by using the Codejock COM
ReportControl

• It is modeled using a set of composite classes that
represents
– The grid
– The columns
– The data (i.e., the data-source)

The New Grid Class Structure

cCJComReportControl
--- cCJGrid
------ cCJGridPromptList
------ cDbCJGrid
--------- cDbCJGridPromptList

cCJComReportColumn
--- cCJGridColumn
------ cDbCJGridColumn

cObject
--- cCJGridDataSource
------ cCJGridCachedDataSource
--------- cDbCJGridDataSource

The Composite Classes
• The Interface

– All grid, column and data-source objects communicate through a standard
abstract interface

– This interface contract must be upheld
– The interface and even the direction of the interface was designed to be as

simple as possible. For example:
• The data source object sends no messages to grid objects and only sends a few

messages to the grid column object
• The grid object has no idea how data is maintained in the data source
• The grid object knows nothing about column meta-data (data type, mask, appearance)

– The interface can be extended in sub-class sets
• An extension requires sub-classing all objects
• An attempt was made to keep the need for extensions minimal

• The Implementation
– The actual implementation of these interfaces is up to the class
– As long as the interface is supported the implementation can be anything
– We provide those implementations in our classes
– You may replace or augment these implementations in your classes

Regular Grids - cCJGrid

Grid Composite Object Structure

cCJGrid

cCJGridDataSource

cCJGridColumn(s)

Grid Composite Object Structure

cCJGrid or cCJGridPromptList

(cCJGridDataSource)

cCJGridColumn Object.1
:
cCJGridColumn Object.n

A cCJGrid Object

Object oGrid is a cCJGrid
Set Size to 230 408
Set Location to 7 9

Object oName is a cCJGridColumn
Set psCaption to "Name"
Set piWidth to 95

End_Object

Object oType is a cCJGridColumn
Set psCaption to "Type"
Set piWidth to 55

End_Object

Object oSize is a cCJGridColumn
Set psCaption to "Size"
Set piWidth to 50

End_Object

End_Object

The Grid Class
• The grid class controls the overall behavior of the

grid
– It handles things like overall appearance, edit modes,

selection modes, activation, navigation, saves and
deletes

– Most external events and messages are sent to the grid
where it either:

• Handles the event or message
• Sends it to the appropriate column object
• Sends it to the data source object

– It has a lot of properties
• This is where we expose the wealth of grid attributes

provided by the Codejock control

The Grid Column Class

• Much of the code that controls how a grid
behaves will reside in the grid column objects and
not in the grid object

• Column properties determine a column’s
appearance and behavior

• Most custom events for navigation and validation
will be placed in grid column objects

The Grid Column Class

• When designing your grid remember that columns can be
moved around and hidden at runtime
– Don’t assume that you know what the order of navigation is
– When accessing other grid columns it is best to access them

by their object name (which doesn’t care about order)

• Each column is assigned an item order, which is determined
by the creation order of your grid columns
– This order determines the order of columns values in your data

source array
– The piColumnId property returns a column’s creation order
– This can and should be used when filling data into a data

source

Using piColumnId
• This uses piColumnId to load column values into the data source array.

This is more robust than using the ordinal values (0, 1 and 2). Assume
there are two grid columns oColumnChoice and oColumnId

Procedure LoadMyData
tDataSourceRow[] DataSourceArray
Integer iChoice iId
Get ColumnId of oColumnChoice to iChoice
Get ColumnId of oColumnId to iId
Move "First Choice" to DataSourceArray[0].sValue[iChoice]
Move "A" to DataSourceArray[0].sValue[iId]
Move "Second Choice" to DataSourceArray[1].sValue[iChoice]
Move "B" to DataSourceArray[1].sValue[iId]
Move "Third Choice" to DataSourceArray[2].sValue[iChoice]
Move "C" to DataSourceArray[2].sValue[iId]
Send InitializeData DataSourceArray

End_Procedure

The Data Source Class

• The data source manages the data
• The grid and grid column objects treat the datasource as a black box

– When they need data they ask for it
– When they need to update the data for a column in the current row, the column

object tells the data source to update a value

• Row edits, inserts and deletions are handled by the data source
– The data source will keep itself up to date with changes
– If needed the data source will update external sources (DDs) with changes

• The data source is the silent partner in the grid and you will have limited
interactions with it:

– The object is created automatically so you won’t see it in your code
– There are few properties to set
– The data source keeps track of the current row (SelectedRow)
– With a static grid you will send messages to process data
– With a dynamic data aware grid you may never send a message to it

• While silent, it is a very sophisticated class

cCJGrid

• Let’s see some examples…

The Data Aware Grids

• The data aware classes are sub-classes of the three grid
composite classes and turns the grid into a data-entry object
(DEO)

• cDbCJGrid
– is extended so that it understands and implements the Data Dictionary

to DEO interface contract

• cDbCJGridColumn
– is extended so it can be bound to DD objects using the Entry_Item

command

• cDbCJGridDataSource
– is extended so that it is always synchronized with a DD server
– is extended to support a dynamic data source allowing for partial

loading of data, and caching of data

Data Aware cDbCJGrids

The DD / DEO interface contract

DataDictionary (DD) DEO Object

• DDs and DEOs communicate with each other via an interface contract

• DDs keep track of all client DEOs they serve

• Any change in a DD will send messages to its client DEOs

• A DEO knows which DD server it is attached to

• A DEO uses its DD to determine how it should behave

• A change in a DEO will sends messages to its server DD

• A DEO will send request messages to its server DD

Data Aware cDbCJGrids

Data Aware Grid Object Structure

cDbCJGrid

cDbCJGridDataSource

cDbCJGridColumn

DataDictionary

Db-Grid Composite Object Structure

cDbCJGrid or cDbCJGridPromptList

(cDbCJGridDataSource)

cDbCJGridColumn Object.1
:
cDbCJGridColumn Object.n

A cDbCJGrid Object

Object oCustGrid is a cDbCJGrid
Set Size to 180 281
Set Location to 6 6
Set Ordering to 1
Set Server to Customer_DD

Object oNumCol is a cDbCJGridColumn
Entry_Item Customer.Customer_Number
Set piWidth to 38
Set psCaption to "Number"

End_Object

Object oNameCol is a cDbCJGridColumn
Entry_Item Customer.Name
Set piWidth to 183
Set psCaption to "Customer Name"

End_Object

Object oEmail is a cDbCJGridColumn
Entry_Item Customer.EMail_Address
Set piWidth to 50
Set psCaption to "email"

End_Object

End_Object

Static and dynamic data sources

• A static grid loads all data at once.
– It is your responsibility to load the data into the grid*
– It is your responsibility to process your grid data*
* Usually (more in next page)

• A dynamic grid loads and caches data as needed
– Usually dynamic data is loaded and maintained

automatically

• Regular grids (cCJGrid, cCJGridPromptList) are
static

• Data aware grids (cDbGrid, cDbCJGridPromptList)
are dynamic by default but can be set to be static

The dynamic data source
• Data aware grids (cDbGrid, cDbCJGridPromptList) are by default

dynamic
– The data source loads, caches and refreshes data as needed
– When rows are saved, the data source updates the DDs and the tables

• Data aware grids can be set to be static
– This powerful feature is controlled by one property - pbStaticData
– The data can be loaded manually or automatically.
– If the data is not yet loaded, the first time data is needed, it just loads

all of the data
– Static data-aware grids still refreshes the current row with the latest

DD data
– Saving a row in a static grid does a full DD Save
– Clearing the data source will cause the grid to refresh itself the next

time it needs data

Use the cCJGrid or the cDbCJGrid?

• The non-data aware cCJGrid is much more
powerful and full featured than our old grid class
– You may find that many of your more advanced grid

needs can be handled by this class
– Customizing the cCJGrid class is easier that customizing

the data-aware cDbCJGrid class.
– When in doubt, start with the cCJGrid class

• In the long run it is usually easier to take a simpler class
and add capabilities than to take a more complex class and
remove capabilities

The current row
• The grid operates around the concept of a current row

(SelectedRow)
– The row you have navigated to and possibly editing is the

SelectedRow
• Row data values can be accessed through the column

object
– SelectedRowValue accesses the current row
– RowValue accesses any row

• You should only change values in the current row
– Those values changed via the column object’s

UpdateCurrentValue method
– The current row concept allows the grid to utilize the DataFlex

row/record logic (edit, validate, verify, etc.)
• The data source can be directly changed using a batch

mode

Multi-Select Lists

• Grids can be no-select, single-select or multi-
Select
– This is all controlled by various grid properties
– Selections can be made via standard mouse keyboard

events or programmatically
– Various methods allows you to process selected items

• The current row (SelectedRow) is different than a
selected row
– sorry about the name

• Multi-select should only be used with static grids

Changing multiple Values
• Batch changes to a grid, where you change a number of

rows at one time should be done by operating directly on
the data source.
– Load the data source array (Get DataSource)
– Change whatever you want directly in the array
– Put the data back into the grid using InitializeData or

ReInitializeData

• This is much more efficient than trying to save and change
each row within the grid

• This bypasses the normal save logic (validation,
verification, etc.), which is probably what you want

• You would only do this with static grids

The legacy grid classes

• New Grids versus Old Grids
– The new grids are not meant to be interface compatible

with the old grids
– The new grids are not meant to be feature equivalent

with the old grids
• Although we added a lot more equivalence than we

planned

– The new grids are meant to be interface and feature
compatible with the DataFlex Framework and with DDs

– The old grids still work
• They can be used side by side with the new grids
• There will be few changes in these old legacy classes

The Codejock Report Control
• The public interface consists of the COM classes and

methods and the higher level COM classes and methods
we’ve built on top
– The COM interfaces are prefixes with cCJCom, Com and

OnCom
• Our interface isolates you from the COM interface level

– Always start by using our interface
– If required the entire COM interface is available for

customization
• Recognize that working at the COM level is working at a lower

level. This requires more knowledge and more time

• This is designed to be a Grid and not a Report Control
• You can use this COM control as a Report Control
• If you are looking for a great reporting control class check out the

“VDF SIG Codejock Library”

The Data Source and Virtual Mode
• The report control supports a feature called “Virtual Mode”

– When enabled, the grids data is stored in a an external source that the grid
knows knows nothing about

– The grid only knows how many rows it has, which is used to position the
scrollbar thumb

– When the grid needs to paint a cell, it sends an event asking for data for a row
and cell value.

– It is up to this event to provide a value
– This event can be called for any cell at any time
– This event gets called quite often. It has to be fast

• Our Grid class uses virtual mode to separate the grid from the data
– We use the cell paint event to provide the grid with requested cell data
– When data is edited, we update the data source which indirectly updates what

you see
– This allows us to support a dynamic data source

Report versus Grid Control
• The Grid

– Is designed for row oriented data-entry
– It uses the DataFlex model for navigation, edit, validations and verifications
– It can work with dynamic data. Data is acquired from a data source object

supporting caching, partial loading of data
– Is in “grid” format – its just cells of rows and columns. No fancy nesting or

grouping
• The Report Control

– Is designed as a reporting control
– All data is loaded directly into the grid. No caching.
– Has great native sorting, grouping and filtering capabilities
– You are working at a lower level.
– Has very limited data entry capabilities

• Which Control to Use
– Usually the choice is clear
– There are cases where either control would do the job

• A static read-only multi-select list would work with either
– If you are unsure, use the Grid

	Understanding the Architecture of the New Grids
	The New Grids
	The New Grid Class Structure
	The Composite Classes
	Regular Grids - cCJGrid
	Grid Composite Object Structure
	A cCJGrid Object
	The Grid Class
	The Grid Column Class
	The Grid Column Class
	Using piColumnId
	The Data Source Class
	cCJGrid
	The Data Aware Grids
	Data Aware cDbCJGrids
	Data Aware cDbCJGrids
	Db-Grid Composite Object Structure
	A cDbCJGrid Object
	Static and dynamic data sources
	The dynamic data source
	Use the cCJGrid or the cDbCJGrid?
	The current row
	Multi-Select Lists
	Changing multiple Values
	The legacy grid classes
	The Codejock Report Control
	The Data Source and Virtual Mode
	Report versus Grid Control

