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The New Grids

• The new grids classes were created to replace the 
functionality of the existing grid classes
– We needed to provide replacement  functionality for:

• Regular grids (the old Grid class)
• Data Aware Entry grids (the old dbGrid class)
• Prompt lists (the old dbList and List class)

• A new grid is implemented by using the Codejock COM 
ReportControl

• It is modeled using a set of composite classes that 
represents
– The grid
– The columns 
– The data (i.e., the data-source)



The New Grid Class Structure

cCJComReportControl
--- cCJGrid
------ cCJGridPromptList
------ cDbCJGrid
--------- cDbCJGridPromptList

cCJComReportColumn
--- cCJGridColumn
------ cDbCJGridColumn

cObject
--- cCJGridDataSource
------ cCJGridCachedDataSource
--------- cDbCJGridDataSource



The Composite Classes
• The Interface

– All grid, column and data-source objects communicate through a standard 
abstract interface

– This interface contract must be upheld
– The interface and even the direction of the interface was designed to be as 

simple as possible. For example:
• The data source object sends no messages to grid objects and only sends a few 

messages to the grid column object
• The grid object has no idea how data is maintained in the data source
• The grid object knows nothing about column meta-data (data type, mask, appearance)

– The interface can be extended in sub-class sets
• An extension requires sub-classing all objects
• An attempt was made to keep the need for extensions minimal

• The Implementation
– The actual implementation of these interfaces is up to the class
– As long as the interface is supported the implementation can be anything
– We provide those implementations in our classes
– You may replace or augment these implementations in your classes



Regular Grids - cCJGrid

Grid Composite Object Structure

cCJGrid

cCJGridDataSource

cCJGridColumn(s)



Grid Composite Object Structure

cCJGrid or cCJGridPromptList

(cCJGridDataSource)

cCJGridColumn Object.1
:
cCJGridColumn Object.n



A cCJGrid Object

Object oGrid is a cCJGrid
Set Size to 230 408
Set Location to 7 9

Object oName is a cCJGridColumn
Set psCaption to "Name"
Set piWidth to 95

End_Object

Object oType is a cCJGridColumn 
Set psCaption to "Type"
Set piWidth to 55 

End_Object

Object oSize is a cCJGridColumn
Set psCaption to "Size"
Set piWidth to 50

End_Object

End_Object



The Grid Class
• The grid class controls the overall behavior of the 

grid
– It handles things like overall appearance, edit modes, 

selection modes, activation, navigation, saves and 
deletes 

– Most external events and messages are sent to the grid 
where it either:

• Handles the event or message
• Sends it to the appropriate column object
• Sends it to the data source object

– It has a lot of properties
• This is where we expose the wealth of grid attributes 

provided by the Codejock control



The Grid Column Class

• Much of the code that controls how a grid 
behaves will reside in the grid column objects and 
not in the grid object

• Column properties determine a column’s 
appearance and behavior

• Most custom events for navigation and validation 
will be placed in grid column objects



The Grid Column Class

• When designing your grid remember that columns can be 
moved around and hidden at runtime
– Don’t assume that you know what the order of navigation is
– When accessing other grid columns it is best to access them 

by their object name (which doesn’t care about order)

• Each column is assigned an item order, which is determined 
by the creation order of your grid columns
– This order determines the order of columns values in your data 

source array
– The piColumnId property returns a column’s creation order
– This can and should be used when filling data into a data 

source



Using piColumnId
• This uses piColumnId to load column values into the data source array. 

This is more robust than using the ordinal values (0, 1 and 2). Assume 
there are two grid columns oColumnChoice and oColumnId

Procedure LoadMyData
tDataSourceRow[] DataSourceArray
Integer iChoice iId
Get ColumnId of oColumnChoice to iChoice
Get ColumnId of oColumnId to iId
Move "First Choice"  to DataSourceArray[0].sValue[iChoice]
Move "A"             to DataSourceArray[0].sValue[iId]
Move "Second Choice" to DataSourceArray[1].sValue[iChoice] 
Move "B"             to DataSourceArray[1].sValue[iId] 
Move "Third Choice"  to DataSourceArray[2].sValue[iChoice] 
Move "C"             to DataSourceArray[2].sValue[iId] 
Send InitializeData DataSourceArray 

End_Procedure



The Data Source Class

• The data source manages the data
• The grid and grid column objects treat the datasource as a black box

– When they need data they ask for it
– When they need to update the data for a column in the current row, the column 

object tells the data source to update a value

• Row edits, inserts and deletions are handled by the data source
– The data source will keep itself up to date with changes
– If needed the data source will update external sources (DDs) with changes

• The data source is the silent partner in the grid and you will have limited 
interactions with it:

– The object is created automatically so you won’t see it in your code
– There are few properties to set
– The data source keeps track of the current row (SelectedRow)
– With a static grid you will send messages to process data
– With a dynamic data aware grid you may never send a message to it

• While silent, it is a very sophisticated class



cCJGrid

• Let’s see some examples…



The Data Aware Grids

• The data aware classes are sub-classes of the three grid 
composite classes and turns the grid into a data-entry object 
(DEO)

• cDbCJGrid
– is extended so that it understands and implements the Data Dictionary 

to DEO interface contract

• cDbCJGridColumn
– is extended so it can be bound to DD objects using the Entry_Item 

command

• cDbCJGridDataSource 
– is extended so that it is always synchronized with a DD server
– is extended to support a dynamic data source allowing for partial 

loading of data, and caching of data



Data Aware cDbCJGrids

The DD / DEO interface contract

DataDictionary (DD) DEO Object

• DDs and DEOs communicate with each other via an interface contract

• DDs keep track of all client DEOs they serve

• Any change in a DD will send messages to its client DEOs

• A DEO knows which DD server it is attached to

• A DEO uses its DD to determine how it should behave

• A change in a DEO will sends messages to its server DD

• A DEO will send request messages to its server DD



Data Aware cDbCJGrids

Data Aware Grid Object Structure

cDbCJGrid

cDbCJGridDataSource

cDbCJGridColumn

DataDictionary



Db-Grid Composite Object Structure

cDbCJGrid or cDbCJGridPromptList

(cDbCJGridDataSource)

cDbCJGridColumn Object.1
:
cDbCJGridColumn Object.n



A cDbCJGrid Object

Object oCustGrid is a cDbCJGrid
Set Size to 180 281
Set Location to 6 6
Set Ordering to 1
Set Server to Customer_DD

Object oNumCol is a cDbCJGridColumn
Entry_Item Customer.Customer_Number
Set piWidth to 38
Set psCaption to "Number"

End_Object

Object oNameCol is a cDbCJGridColumn
Entry_Item Customer.Name
Set piWidth to 183
Set psCaption to "Customer Name"

End_Object

Object oEmail is a cDbCJGridColumn
Entry_Item Customer.EMail_Address
Set piWidth to 50
Set psCaption to "email"

End_Object    

End_Object 



Static and dynamic data sources

• A static grid loads all data at once.
– It is your responsibility to load the data into the grid*
– It is your responsibility to process your grid data*
* Usually (more in next page)

• A dynamic grid loads and caches data as needed
– Usually dynamic data is loaded and maintained 

automatically

• Regular grids (cCJGrid, cCJGridPromptList) are 
static

• Data aware grids (cDbGrid, cDbCJGridPromptList) 
are dynamic by default but can be set to be static



The dynamic data source
• Data aware grids (cDbGrid, cDbCJGridPromptList) are by default 

dynamic
– The data source loads, caches and refreshes data as needed
– When rows are saved, the data source updates the DDs and the tables

• Data aware grids can be set to be static
– This powerful feature is controlled by one property - pbStaticData
– The data can be loaded manually or automatically.
– If the data is not yet loaded, the first time data is needed, it just loads 

all of the data
– Static data-aware grids still refreshes the current row with the latest 

DD data
– Saving a row in a static grid does a full DD Save
– Clearing the data source will cause the grid to refresh itself the next 

time it needs data



Use the cCJGrid or the cDbCJGrid?

• The non-data aware cCJGrid is much more 
powerful and full featured than our old grid class
– You may find that many of your more advanced grid 

needs can be handled by this class
– Customizing the cCJGrid class is easier that customizing 

the data-aware cDbCJGrid class.
– When in doubt, start with the cCJGrid class

• In the long run it is usually easier to take a simpler class 
and add capabilities than to take a more complex class and 
remove capabilities



The current row
• The grid operates around the concept of a current row 

(SelectedRow)
– The row you have navigated to and possibly editing is the 

SelectedRow
• Row data values can be accessed through the column 

object
– SelectedRowValue accesses the current row
– RowValue accesses any row

• You should only change values in the current row
– Those values changed via the column object’s  

UpdateCurrentValue method
– The current row concept allows the grid to utilize the DataFlex 

row/record logic (edit, validate, verify, etc.)
• The data source can be directly changed using a batch 

mode



Multi-Select Lists

• Grids can be no-select, single-select or multi-
Select
– This is all controlled by various grid properties
– Selections can be made via standard mouse keyboard 

events or programmatically
– Various methods allows you to process selected items

• The current row (SelectedRow) is different than a 
selected row
– sorry about the name

• Multi-select should only be used with static grids



Changing multiple Values
• Batch changes to a grid, where you change a number of 

rows at one time should be done by operating directly on 
the data source.
– Load the data source array (Get DataSource)
– Change whatever you want directly in the array
– Put the data back into the grid using InitializeData or 

ReInitializeData

• This is much more efficient than trying to save and change 
each row within the grid

• This bypasses the normal save logic (validation, 
verification, etc.), which is probably what you want

• You would only do this with static grids



The legacy grid classes

• New Grids versus Old Grids
– The new grids are not meant to be interface compatible 

with the old grids
– The new grids are not meant to be feature equivalent 

with the old grids
• Although we added a lot more equivalence than we 

planned

– The new grids are meant to be interface and feature 
compatible with the DataFlex Framework and with DDs

– The old grids still work
• They can be used side by side with the new grids
• There will be few changes in these old legacy classes



The Codejock Report Control
• The public interface consists of the COM classes and 

methods and the higher level COM classes and methods 
we’ve built on top
– The COM interfaces are prefixes with cCJCom, Com and 

OnCom
• Our interface isolates you from the COM interface level

– Always start by using our interface 
– If required the entire COM interface is available for 

customization
• Recognize that working at the COM level is working at a lower 

level. This requires more knowledge and more time

• This is designed to be a Grid and not a Report Control
• You can use this COM control as a Report Control
• If you are looking for a great reporting control class check out the 

“VDF SIG Codejock Library”



The Data Source and Virtual Mode
• The report control supports a feature called “Virtual Mode”

– When enabled, the grids data is stored in a an external source that the grid 
knows knows nothing about

– The grid only knows how many rows it has, which is used to position the 
scrollbar thumb

– When the grid needs to paint a cell, it sends an event asking for data for a row 
and cell value.

– It is up to this event to provide a value
– This event can be called for any cell at any time
– This event gets called quite often. It has to be fast

• Our Grid class uses virtual mode to separate the grid from the data
– We use the cell paint event to provide the grid with requested cell data
– When data is edited, we update the data source which indirectly updates what 

you see
– This allows us to support a dynamic data source



Report versus Grid Control
• The Grid

– Is designed for row oriented data-entry
– It uses the DataFlex model for navigation, edit, validations and verifications
– It can work with dynamic data. Data is acquired from a data source object 

supporting caching, partial loading of data
– Is in “grid” format – its just cells of rows and columns. No fancy nesting or 

grouping
• The Report Control

– Is designed as a reporting control
– All data is loaded directly into the grid. No caching.
– Has great native sorting, grouping and filtering capabilities
– You are working at a lower level. 
– Has very limited data entry capabilities

• Which Control to Use
– Usually the choice is clear
– There are cases where either control would do the job

• A static read-only multi-select list would work with either
– If you are unsure, use the Grid
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